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Abstract-Tbe paper examines the topological structure of all possible solutions which can exist in flows 
through adiabatic constant-area ducts for which the homogeneous diffusion model has been assumed. The 
conservation equations are one-dimensional with the single space variable :. but gravity effects are 
included. The conservation equations are coupled with three equations of state: a pure substance, a perfect 
gas with constant specific heats, and a homogeneous two-phase system in thermodynamic equilibrium. The 
preferred state variables are pressure P. enthalpy h. and mass flux G:. 

The three conservation equations are first-order but nonlinear. They induce a family of solutions which 
are interpreted as curves in a four-dimensional phase space conceived as a union of three-dimensional 
spaces (P. h. G:; :) with G: = const treated as a parameter. It is shown that all points in these spaces are 
regular, so that no singular solutions need to be considered. The existence and uniqueness theorem leads to 
the conclusion that through every point in phase space there passes one and only one solution-curve. 

The set of differential equations, treated as a system of algebraic equations of each point of the phase 
space, determines the components of a rate-of-change vector which are obtained explicitly by Cramer's 
rule. This vector is tangent to the solution curve. Each solution curve tarns downward in : at some specific 
elevation :*. and this determines the condition for choking. Choking occurs always when the exit flow 
velocity at L ,, ~.* is equal to the local velocity of propagation of small plane disturbances of sufficiently 
large wavelength, that is when the flow rate G becomes equal to a specified, critical flow rate. G*. (The 
possible dependence of the sonic velocity on frequency in a real flow is ignored, because it has not been 
allowed for in the equations of the model under study.) A criterion, analogous to the Mach number, which 
indicates the presence or absence of choking in a cross section is the ratio K = G/G** of the mass-flow rate 
O to the local critical mass flow rate, G'*. K = I denoting choking. The critical parameters depend only on 
the thermodynamic properties of the fluid and are independent of the gravitational acceleration and 
shearing stress at the wall. 

The topological characteristics of the solutions allow us to study all flow patterns which can. and which 
cannot, occur in a pipe of given length L into which fluid is discharged through a rounded entrance from a 
stagnation reservoir and whose back-pressure is slowly lowered. The set of flow patterns is analogous to 
that which occurs with a perfect gas, except that the characteristic numerical values are different. They 
must be obtained by numerical integration and the influence of gravity must be allowed for. 

The preceding conclusions are valid for all assumptions concerning the shearing stress at the wall which 
make it dependent on the state parameters only. but not on their derivatives with respect to :. However. the 
study is limited to upward flows for which the shearing stress at the wall and the gravitational acceleration 
are codirectional. 

I. INTRODUCTION 

The motivation for this paper is a desire to study the upward flow of geothermal brines through 

vertical wells and to determine the conditions under which they choke. As a first approximation 

the brine is assumed to consist of water substance which may occur in one or two phases. The 

presence of gaseous or solid solutes is ignored for the present,  and the flow is treated as 

adiabatic. 

Except for the added effects of considerable changes in potential ene rgy - -gdz  per unit mass, 

with z denoting the vertical space coordinate- - the  analysis to be presented here can be of use 

in several other applications, notably in the study of certain elements of nuclear reactors, the 

piping employed for interstage reheating or feed-water  heating in wet steam turbines, as well as 

in the long ducts of geothermal installations. 

+Present address: Institute of Fluid Flow Machinery. Polish Academy of Sciences, Gen. Fiszera 14a, 80-952 Gdansk. 
Poland. 
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At this stage, the analysis will be confined to homogeneous flow models, to steady flows, and 
to pipes of constant cross section. The method of analysis is a natural extension of the earlier 
work of one of the authors with his then collaborators (Kestin & Oppenheim 1948; Kestin & 
Zaremba 1952-54). 

The study of choking of two-phase flows in pipes has been undertaken by many research 
workers, notably by Bour~ et al. (1976), Hsu & Graham (1976), Wallis (1969) and others. 
Summary reviews have recently been published by Giot (in Delhaye, Giot & Riethmuller 1981), 
Bour¢ (in Ginoux 1978) and Wallis (1980). However, no unambiguous criterion for the 
occurrence of choking has been formulated. 

2. METHOD 

The analysis consists of several distinctive steps. 
~rst. we write the three conservation equations in terms of space averages, leaving in them 

a single space variable, the axial distance z. All quantities are assumed to be time averages and 
turbulent fluctuations are not introduced explicitly. This is the so-called one-dimensional or 
"engineering" approximation. 

Secondly, we set up a flow model for two-phase flow. In the present study, we restrict 
ourselves to the homogeneous diffusion model (Ginoux 1978; Wallis 1969). This is done for 
simplicityt. 

The model assumes a constant pressure and temperature in every cross section as well as 
thermodynamic equilibrium between the phases. Surface-tension effects are neglected and 
infinite evaporation and condensation rates are stipulated. 

Thirdly, we assume an equation of state. In this respect it is helpful to analyze in parallel the 
case of general single-phase flow and the flow of a perfect gas with constant specific heats as 
well as to mention the case when a two-phase flow is choked after all of the liquid has 
evaporated. 

Fourthly. we discuss in detail the set of possible solutions admitted by the three coupled 
ordinary nonlinear differential equations provided by the flow model. The analysis is geometri- 
cal and is conducted in a three-dimensional phase space chosen for its simplicity. The same 
mathematical method can be used for the case of the more complex models, including, mutatis 
mutandis, the two-fluid model. 

The essential novelty of the method, as applied to problems of two-phase flow, is the full 
use of the existence and uniqueness theorem applicable to the set of three equations under 
discussion (Kestin & Zaremba 1952; Birkhoff & Rota 1969; Kaplan 1958) and the study of the 
topological nature of the set of solutions. Except for the case of a perfect gas with constant 
specific heats, the actual solution must be numerical. 

3. THE PROBLEM IN THE P H Y S I C A L  SPACE 

The nature of the problem in the physical space is illustrated in figure 1. We are given a vertical 
adiabatic pipe of constant cross-sectional area A = ~rD"/4 and length L through which there 
flows upwards and in steady-state a fluid which may evaporate and condense. The fluid is acted 
upon by the terrestrial gravitational acceleration, g. We wish to determine all possible flows in 
terms of the back-pressure P= maintained outside z~ = L, and to identify the subset of initial 
conditions which may occur at the entrance to the pipe at ~'~ = 0. We regard the pipe as a 
continuous thermodynamic system whose "state" is described by three quantities: two 
"proper" thermodynamic properties (we shall favor the pressure P and enthalpy h) and one 

t in order to concentrate on the problem at hand we do not attempt here to pinpoint the desirable nomenclature for the 
different flow models proposed in the literature. The model employed is clear from the equations if not from the term. The 
only matter that may arouse discussion is whether the model used here can be applied, by way of acceptable 
approximation, to flows with slip, in which case the closure equation for the shearing stress would contain the velocity 
different between vapor and fluid. ,'e; - Wl. and a second closure equation would be needed. 
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Figure I. The physical problem. Note that P, need not be equal to P,. but P, -> P,. 

hydrodynamic property (we shall favor the mass-flow rate G = rit/A = pw. where w is the 
velocity and O is the average density). The state of our continuous system is thus described by 
the three functions ("fields"): 

PC:),h(:) and GCz), 

the latter being constant for a given flow, but varying as the boundary conditions outside the 
pipe are varied. In particular, we shall be interested in the relation of the exit pressure, P,, to 
the external pressure P,, to which it may, but need not. be equal, remembering however, that 
P, >- P,, for outflow. We are also interested in the variation of the mass flow rate rfi = GA with 

Pt.. 

We realize at this point that there exists no direct mechanism which would allow us to 
impose on the pipe both the thermodynamic conditions at inlet "t -- 0 as well as the flow rate G. 
The latter is also affected by the flow resistance, that is by the pressure drop P, - PI suffered by 
the pipe. We can think in terms of a fictitious stagnation reservoir in which there is maintained a 
fixed state, subscript O, and from which the fluid is accelerated isentropicaily from wo = 0 to wt 
as the back-pressure is varied. In analogy with the familiar case of a gas, we can foresee, and 
analysis will confirm, that for a fixed stagnation state the mass flux, G, treated as a function of 
the back-pressure P, will reach a maximum for a particular value P* of P~. This is the process 
of choking which occurs for a specified set of conditions at inlet :l = 0. It is these conditions 
that remain to be discovered in the course of our analysis. 
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4. T HE  C O N S E R V A T I O N  E Q U A T I O N S  

The homogeneous diffusion model is specified by the following three conservation equa- 
tions: 

z(Apw) = O; 

dP d C 
~ + ~  (ow:) + go + X ,., =o; 

~ (h +-~+gz) =0. 

[1] 

[2] 

[3] 

This set of equations is familiar from elementary gas dynamics (Liepmann & Roshko 1957; 
Shapiro 1953) for single-phase flows, with C denoting the circumference of the cross section 
A. The three coupled, first-order non-linear differential equations contain five "state" variables 

p(z), w(z), P(z), h(z), rw(z). 

The system of equations is closed by adding an equation of state {we shall favor equations of 
state of the form 

p = p(P, h), [4] 

valid for single as well as two-phase flow} and by a closure equation? for shearing stress, r,,. 
Regarding the latter we merely stipulate that it is a relation between state variables 

F(p, w, P, h, ~'.) = O, (r. > 0), [5] 

to the exclusion of their derivatives with respect to z. As indicated in an earlier footnote we 
leave open the question of the suitability of this set of equations to deal, approximately, with 
flow in the presence of relative velocity. The subsequent discussion remains valid in the 
presence of relative velocity as long as[5] contains a measure of it, but not its z-derivative, and 
as long as the additional closure equation is of a form analogous to [5]. 

In the case of two-phase flow, the velocity w is the barycentric velocity defined by 

p w  = WLpt. ( 1 -- Ot ) + WGpGOt, [61 

where e is the void fraction, and pL(P), pG(P) are known functions of (saturation) pressure. 
The extensive specific properties ¢, (such as enthalpy h, entropy s, etc.), all expressed per unit 
mass, obey the general equation 

<b=( I  -x)~bI+x4PG [7] 

where eL(P), d~(P) are known functions and x is the dryness fraction (equal to quality only in 
the absence of relative velocity). The void fraction, or, and dryness fraction, x, are interchange- 
able owing to the existence of the equivalence relation 

I 
= xplp~ = pcJXpL- PJPL + I '  [8] 

*We prefer to use this term borrowed from the theory of turbulence rather than the terms "constitutive law'" or 
"external constitutive law'" recently proposed. The term used here appears to be semantically more appropriate. 



TWO-PHASE FLOW IN A VERTICAL PIPE 273 

The mass flux ~t G = - mL which results from a change of phase is governed by the partial 
equation of mass conservation 

fa~ = - mL = d (Aap~w) [9] 
U2 

which need not enter our discussion because the mass flux in it is uniquely determined once the 
main system of three equations has been solved. 

5. WORKING EQUATIONS 

We can considerably simplify the analysis by choosing the following independent variables: 

GZ(z), P(z). h(z). [I0] 

We stipulate A = ,rD:/4 = const and obtain 

Here 

dG: 
d z 

O:C, 
- 7 -  

= O; [ l l a ]  

G'pC dh 4zw _ : ~ = - - - ~ - -  pg;  

dP r GZC,1 dh 

02 C, = ( a p ) ' a l w a y s  > 0); C: = (ah)p  'always <0). 

for single as well as two-phase flows. 
As far as the equation of state, p = p(P. h), is concerned, we have 

p = %P/Rh 

for a perfect gas. and 

[Iib] 

[tlcl 

[12a, b] 

[13a] 

6. THE MATHEMATICAL PROBLEM 

The three conservation equations [ila-c] together with the substitutions [4] and [5] con- 
stitute a set of three coupled ordinary nonlinear first-order differential equations for the three 
variables G:, P, h. conceived as functions of the single variable z. From the physical point of 
view the three variables G:. P. h are independent and together determine the state in a cross 
section. Treated as functions of the single independent space variable :, that is from the 

I 
- = U(P)h + V(P) [13b] 
P 

for a two-phase system in thermodynamic equilibrium. Here 

U(P)=(t't;-VL)l(ha-hL) and V(P)=vL-hL(Va-VL) l (hc , -hL)  [14a, b] 

are assumed to be known, say. from ad hoc fits to thermodynamic tables. 
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m,.thematical point of view, they are the dependent functions of the problem: O"(z). P(:), and 
h(z). This set of three parametric equations traces a single curve in the four-dimensional phase 
space G", P, h; z for each particular flow through a vertical pipe. 

Regardless of the equation of state, the system of differential equations can be contracted to 
the matrix equation 

do" i Ao(a)--~= Bj(o) ( i . j=  1.2.3) [15] 

in which the row vector dai/d: has components dG"/d:, dP/d: and dh/dz. The matrix A, i 
possesses the simple structure 

A i j  - -  A:: A,+ 
A;: A 

[161 

The elements A::, A:+. As:. A .  are listed explicitly in table I for the specialized cases of a 
perfect gas and a two-phase mixture in equilibrium. The components of the column vector B i 

.,-r+:] 
Li+,_I 

[171 

are listed in table 2, Their general form is recorded in [I la-c]. 
The direct method of dealing with [15] is to set up a computer program and to solve the 

equations by a step-by-step procedure starting with a given set of initial conditions. At each 
step we would solve a system of simultaneous, linear algebraic equations in which the elements 

Table I. The elements of matrix 116] 

[ ' v r f t ' ¢ t  g ; l~  I , l t i l  I I t l i ' i t l l i l  Ilii I, t t l i ' U  

t ; ' R h  
A , ,  l . . . .  , 

P 

( ;" I t  
a 2 3  c ~  ~ 

P 

' dt l  d~ J 
• C;" d-i; I . dl,!j 

C - I I  

( ; ' l ~ ' h  2 +  ~ ' ALl d V )  
[ ; "  I I I h "  ' l  ~ ] i i ,  , d+ + J A32 • - ¢ _ p  a 

I '  

( , ' R ' h  | o (;2tl tub  • ~,~ 
A 3 3  [ • " - ~ " T "  

P 

Table 2. The elements of vector [171 

I ' c r t ' c , : t  L+a++ E q l H  [ i b r l ~ t r n  mt , t t ~ l r c  

8 ,  " -~T I~ tJh , ',, . "k~h - g  - ~. . . _ ~  . ~ _ - -  

B 3 " :,: - g 
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of the matrix A,~ and of the column vector Bj become given numbers. The initial conditions 
would determine a value of G: which stays constant in a given flow, and each step in the 
calculation of dP/d: and dh/d:, would require the solution of two simultaneous algebraic 
equations, say, (but not necessarily), by Cramer's rule. In the latter case we would obtain 

d P  = Np and d._hh = N..A [18a, b] 
d: A d: A " 

where 

A. I  [19] 

is the determinant. Explicit expressions for the three quantities: Np, Nh, and A are given in table 
3. Such a direct procedure has several drawbacks. First, it is not certain that there exists a 
solution for the assumed initial conditions. Secondly, if a step involving A = 0 were encoun- 
tered, the computer program would fail to calculate the step. Thirdly, the onset of choking 
could only be established by a search procedure for a maximum in G with varying initial 
conditions and complex matching to the back-pressure, engaging the computer in a good deal of 
groping iteration. 

It is sometimes supposed that the onset of choking can be deduced from the character of the 
system of algebraic equations, and it is asserted that A -- 0 represents a necessary critical flow 
criterion (Bourd in Ginoux 1978, p. 185). Although the above statement will prove to be correct 
in our case, it is not clear that it possesses general validity. The analysis given in the succeeding 
sections of this paper will present an unambiguous method of identifying the onset of choking 
conditions. 

At this stage we can only assert that the two algebraic equations may occur in three 
versionst: 

(I) A ~ 0. In this case, regardless of the sign of Np and Nh, the equations possess a unique 
solution and the numerical solution (such as by the Runge-Kutta procedure) can progress by 
one step. 

(2) A = 0. in this case either (a) Np ~ 0 and Nh" 0, or (b) N o = Nh -- 0. The vanishing of only 
one of Nh, N r without the other is not possible. 

(2a) The two algebraic equations are inconsistent.T Without a proper analytic investigation 
of the neighborhood of this state with A~0  instead of A--0, it is not possible to draw any 
conclusions regarding the behavior of our flow. 

(2b) The two algebraic equations are compatible, but one is a multiple of the other, and an 
infinity of solutions for dh/d: and dP/d: is possible. Again, without a proper analysis of the 
neighborhood of this state, no further conclusions can be drawn. The explicit forms displayed 
in table 3 demonstrate that this case cannot occur in our present problem, though it may appear 
in downward flow through a channel of constant cross section or in channels with varying cross 
sections. A brief remark about this case will be made in section 7. 

The theory of coupled ordinary differential equations, based on a simple extension of the 
method of isoclines to a multidimensional space, and interpreted geometrically, will enable us to 
obtain a clear topological description of all possible solutions to our problem thus laying the 
foundation for more efficient programming. 

,"The occurrence of homogeneous equations is excluded by the physics of our problem as seen from [I la-c] and table 2. 
However. an elementary search for the velocity of propagation of a plane disturbance would lead us to solving the three 
related homogeneous equations and to the conclusion that the propagation vetocity is implied in the equation ~ = O. 

t.ln a manner of speaking, we can say that the two straight lines in dhld:, dPId: represented by the two linear algebraic 
equations for them "intersect at infinity", suggesting that ~--. 0 implies dh/d:--. ~c and d P/d:--. :c. 
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Table 3. Explicit expressions for the components Ne, N~ A 

General Pe r fec t  gas Equi l ibr ium mixture 

Np • 

N h " 

4rw(p 3 - C2 Gz) * Dg.o 4 

DO 3 
- ~ " y2p- _~- (Y-I)~ 

a _ ~-T a G2 

N < 0 for a l l  s t a t e s  
P 

~G2C1 r- 4 * O p 3 g  4~" W ~ ' ' -1 ' i d U b  d ~.~ G ' h ' l y - l ) "  
- - - - ~ 2  3 - g O G''rw (Uh * ~,) Lj I, " j]T~ - g 

D3 O Y P 

N h < 0 for a l l  s t a t e s  

G 2 G 2 
I - ~ c  I - ~ c  2 I - , ' - ' ~ p  

(32 " , A = 0 for = p ' a "  or 

dU d~,'~ I . G 2 ~ - b  * ~-~j * G ' t l t U h  , V] 

2 2 [ fdll dV 1 !-1 G" 2 0 3 ~__ p ~ - ~ h .  ~ - tub . VlU 
- C1 o , C2 ~,-1 h 

There exists no method to deal with [151 in all its generality. Here we have encountered a 
very simple version of it, and this enables us to carry out a complete analysis. More complex 
cases can and will be discussed in later publications, but the gist of the approach should be 
clear from the present analysis. 

7. T H E  T O P O L O G Y  O F  T H E  P H A S E  S P A C E  

The property Ilia] allows us to study the topology of the four-dimensional space (G:, P, h, 
z) in terms of the set of subspaces (P, h, z), referred to as F0 with G:=  const treated as a 
variable parameter. Since 0 < P < Po and 0 < h < h., we are only interested in the portion of r 
contained within these bounds. A point, M, in r represents a state in a cross section, and the 
flow through a pipe is represented by a curve, denoted by m in figure 2. This is a Fanno line 
well-known from elementary studies.f 

Equations [15] determines a vector which at any point M is tangent to m. The projection 
0 = do, Jdz  (a =2, 3) is tangent to m in r. The components of 0, given by [18a. b] and listed 
explicitly in table 3, are: Np in the direction P, Nh in the direction h, and A in the direction z. 

The structure of the set of solutions m is determined by the structure of the vector field 0 in 
F. This structure turns out to be very simple to sketch by noting several of its algebraic 
properties. The components Np, Nh, A do not contain z explicitly and depend only on the 
thermodynamic properties P. h. Moreover, Np and Nh are always negative and only A may 
change sign. This occurs when a particular combination P*, h* of P, h satisfies the relation 

A(P*. h*; G) = 0. [201 

The solution of [20] in the form 

G = G*(P*. h*) [2~] 

determines a line of critical states in P. As a final point we note that INel and [Nhl increase in 
the negative directions of P and h, respectively. 

lsoclines, i.e. lines along which the vector 0 has a constant value, are straight and parallel to 

"We restrict the discussion to upward flows. 
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z, figure 3. The isoclines with ~ = 0 form a cylinder 8 which divides I" into two parts. In part I'I 
with A > 0 the vectors 0 force m to ascend, whereas in I'; with A < O, curves m descend, figure 

4. In any plane : = const, the vector 0 is normal to : along the intersection with/x = O, and lies 

in that plane. Curves m turn at such points and exhibit maxima in :, denoted by :*. 

F (G z :const) 

\ 
\ 

\ 
\ 

P 

Figure 2. Fanno line in the subspace (k, P, z) denoted r(G z = const). 
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/ 
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p 0 
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I 

\ 

Figure 3. Isoclines in F-space. 
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z / i" (G a • coast) 

/ 

4 

0 

Figure 4. The turning of a solution. 

We can complete the topological sketch of curves m by recalling the local existence and 
uniqueness theorent (see for example, Kaplan 1958; lace 1956; Goursat 1959; Coddington & 

Levinson 1955). Since Np, Nh are of one sign, there exist no points for which 

N~, = Nh = A = 0 [221 

simultaneously. Interpreted in terms of the theory of ordinary differential equations, this proves 

that C does not contain singular points, all points m being reg,lar. The theorem may be stated 
as follows: 

Through ever)' regular point in the phase space (G:, P, h, z) there passes one and only one 
curve m which is a solution of the system of equations [ l la -c] .  Moreover, by virtue of 

property [I la]. every such curve is confined to subspace G"= const. 
Singular points would occur in our model in downward flow when g and v,, become antiparallel, 
or in a channel of varying cross section. Such cases will be dealt with in another publication. 

it should not be inferred from the above local existence and uniqueness theorem that there 
are no excluded flow sequences (curves m) for the system shown in figure I. These will be 
identified in section 10. 

The diagram in figure 5 shows a family of curves m which originate at points M located on 
one isocline. They are all congruent because they meet the same sequence of vectors 0. Their 
projection m' onto the thermodynamic plane h, P is a single line m' along which values of z can 
be entered in the form of a variable parameter. The value of z increases inward along m' 
reaching a maximum at z = z* where the trace of $ in (h, P) meets m'. 

The diagram of figure 6 displays a family of curves m in C, which have their maxima at the 
same elevation : = z*. At : =0  these curves trace a line n~ which intersects the isentrope 
s = so(ho. Po) of the stagnation state at a single point. This proves that for a given value of G 
there exists a single state I in a pipe whose solution peaks at a prescribed value :* of z and 
satisfies the condition that s, = so. 

Since only solutions with increasing :. have physical significance, we conclude that a 
solution curve m. figure 7. must be regarded as consisting of two branches, m~ in C, and m: in 
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F:, both ending at : = :*. Since at : = :* dh/d: and dP/d: both become infinite some authors 
object to regarding this particular state as possessing physical significance, but the objection is 
easily met by excluding the maximum point and treating m~ and m: as open sets. Whereas re, is 
traversed in the positive direction defined by ~, the branch m: would have to be traversed in its 
negative direction. We shall show in section 11 that both possibilities are characterized by an 
entropy increasing with : and are admissible from the physical point of view. 

F (O z : Consl}  

I F2 ~~ F, 

( A < O )  (A~.0)  

+ i i  

, 

0 
(ho ,Po)  

Figure 5. Congruent curves m. 

z" 

F (G z const )  

O 
( %  ,Po) 

Figure 6. Family of curves which peak at equal etevations : = : ' .  and the unique curve m with .~ = ~, at I. 
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I 
z ] F (G z : tonsil 

[ 
Z* 

Po o 
(ho, Po ) 

Figure 7. Two branches of curve m. 

8. THE VANISHING OF THE DETERMINANT(,~=O) 

Explicit forms of the relation [21] are listed in table 3. The pair of values P*, h* determines 
a critical value G* which has the property that ii occurs for the maximum value z of z* 
characteristic of a given flow rate G = G*. In the present model we discover that 

G* = p'a*,  [21a] 

where p*, a* are local critical values familiar from elementary gas dynamics. 
The general expression for the velocity of propagation of small disturbances 

can be transformed to 

or, equivalently, to 

a" = (aP/clp), [23a] 

a : =  p(ahlap), [23b1 

[' ]-' . 

Equation [23b] results when we put 

[23c] 

aP) a(P.s) and I=(ah'~ a(h.s) 
, = a(p, s) ~ ~ , ~ / ,  = a(P. s )  

Multiplication of the two Jacobian expressions leads directly to [23b]. The identity in [23c] 
follows from 

(aO) (0p)+{ap '~  [ah'~ where {a_h_h'~ I 
,=  ~ , \ah/p\aP/,  \ aP / ,=o '  
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together with [12a, b]. The application of identity [23c] to the expressions in table 3 leads to the 
conclusion that [21a] is equivalent to the condition A = 0 for G -- G*. 

The velocity a is completely determined by the thermodynamic state, i.e. by P and h, as is 
G*. The former is the velocity of propagation of a plane wave of vanishingly small amplitude. 
This is the velocity of sound in a single-phase system or the velocity of propagation of a plane 
disturbance in a two-phase system when the wavelength is large compared to the characteristic 
dimensions of a bubble or droplet. (The possible dependence of the sonic velocity on frequency 
cannot come into evidence, because the basic model equations [1]-[3] make no allowance for 
this phenomenon, or for the associated phenomenon of internal relaxation.) 

The cylinder 8 which separates I't from 1": in F is thus seen to be the locus of all states for 
which the given flow rate G becomes the critical flow rate G*. All states in FI are thus 
characterized by the fact that G at them is lower than the local critical value, denoted by G**, 
whereas in F., they are larger. This can also be verified with reference to the data in table 3. 

The ratio of the actual flow rate, G, to that which would be critical at a given cross section 
with given values of P, h (denoted earlier by G**), or 

K = G/G**, [241 

can be made to play the same part in this representation as does the Mach number in 
compressible fluid flow. Evidently 

K < 1 denotes subcriticai conditions, [25a] 

K = 1 denotes critical conditions, [25b] 

K > I denotes supercritical conditions. [25c] 

Along branch m l of m, we have 

K < I , A > 0  and G=G*<G** 

whereas along branch m2 we observe 

K > I , A < 0  and G = G * > G * * .  

These circumstances have been indicated in figure 7. 
It may be useful to digress here and to point out that the results in [21a] and [25a--c] are a 

mathematical consequence of the adopted flow model only through the structure of the matrix 
A, i in [151. 

In general there is no guarantee that the vanishing of A = IA~j[ will have the same physical 
interpretation in alternative theories of two-phase flow as it receives here. Anticipating the 
results of our physical interpretation of the topological structure of the present vector space 0, 
we see that choking can occur only at the end of a pipe of given length. When this occurs, the 
outflow velocity is that of the local velocity of propagation, a*; it is independent of the 
gravitational acceleration or of the shearing stress, provided only that r,. has the form [5]. More 
generally, this condition is independent of vector B i in [17]. The tendency to impose this or an 
equivalent condition. "on physical grounds", on an independently adopted flow model must be 
resisted, because other models may be inconsistent with such an externally imposed require- 
ment. Alternatively, it is possible to hold the view that only models which are consistent with 
this condition are acceptable. If this is the case, the conditions under which the determinant 
vanishes can be used as a discriminant among competing flow models. 
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9. VARYING THE FLOW RATE G 

To complete our understanding of the topological structure of solutions we must now 
explore the way in which the various characteristic entities move as the flow rate G changes. 
This we propose to accomplish by observing the relations in the three coupled projections of r,  
namely h, : ;  P, z; and the thermodynamic diagram h. P. 

It should by now be clear that limb m: of m corresponds to a sequence of states along which 

K > I with w > a. This is the familiar supersonic branch of our Fanno line m. The branch m8 is 
the subsonic branch. The diagram in figure 6 convinces us that states along m, can be reached 
from the stagnation state Po, ho only if the channel 01 in figure 1 is equipped with a throat. 
Furthermore, the appearance of supersonic states may lead to the formation of shock waves. In 
order to avoid such complications (which could, however, have been easily dealt with at the 
cost of considerably lengthening this paper) we shall confine our discussion to the subsonic 
branch mt whose states can be reached through a gently converging entrance. 

The diagram in figure 8 shows the two projections of an isocline which passes through h =/; 
and P = i 6, together with the directions of 0, for two values of flow rate with 

G., > Gt. [26a1 

Reference to table 3 shows that 

A(G:) < A(G,): IN,,(G:)I > [N,,(G,)I with ]N,,(G:)] > INh(G,)I. [26b] 

This proves that the slopes of m~ along a given isocline increase with G and that increasing the 
flow rate forces the solution to reach its maximum in z for a lower value of z*, so that 

:*(G:) < z*(Gt). [26c1 

A further analysis of the formulae of table 3 proves that A vanishes for 

P*(G:)> P*(GJ but h*(G:)<h*(G,). [26d] 

Three solutions which emanate from a given thermodynamic state M(/~,/3) at z with different 
flow rates G~ < G:<G~ are shown in figures 9a, b. Their topological relations conform to 
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-••• A{G=) A(G I) 

,~(G~)=O I N ( G ) ~  

1 ! 
z'(G z) zI(GI) 

Gz>GI 

ZX(Gz)=O t 

A(GI)=O 

! I Z 
z'(G z) z'(G;') 

l 

Figure 8. Effect of G on vector field 8. 
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[26a-<1]. The same processes are depicted in the h, P diagram of figure 9c. We have placed here 
the initial state M(h, t 5) on the liquid saturation line x = 0 which would correspond to the flash 
horizon in a geothermal well. 

As a further aid to the reader's geometric imagination, we introduce figure I0, which 
illustrates the relative positions of the characteristic curves of constant G*, a and x (ap- 
proximately to scale) for water-steam mixtures. We have addtd segments of curves of 
p -- const and s -- const indicating the direction in which their values rise. 
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Figure 9. Fanno curves for G~ < G: < G). (a) Projection h, z, (b) Projection P. :. (c) Projeciion h. P 

(topologically correct for Iwo-phase water). 
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I0. PHYSICAL INTERPRETATION. ADMISSIBLE FLOWS AND ADMISSIBLE INITIAL STATES 

We revert to the problem depicted in figure 1 and illustrate our reasoning with the aid of the 
h, P diagram of figure I1, continuing to restrict interest to subcritical flows. We start with an 
assumed stagnation state 0(ho, Po), Line 0123 represents the isentrope s = So = const which is 
the locus of all states that can exist in cross section I at : = 0 in figure i. As the flow acc- 
elerates isentropically under the action of a pressure P~ which we imagine decreasing 
slowly, the consecutive points along s = const depict increasing values of G. 

2500 

2000 

1500 

I 0 0 0  
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0 50 I00 150 
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Figure I0. Thermodynamic h, P diagr;,m. 

2 0 0  

hi" Zl* w 

hi 

/ / 
/ / .o,O 

,GO t r ~  0 
G," /Gz " / ' . / / ' {ho .Po)  

, ; , . .  I / G , . . , , 3  . //II ";~ %' 
/ 

p- p; p; p'" 

Choked flow -,.---o-.----- normoI flow 

Figure II.  Flow process in two-phase regime. 
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In the absence of a gravitational field, or for relatively short lengths L, the back-pressure, 
P., at which the exit velocity w, = 0. denoted P,~. is simply P .  = Po. When changes in potential 
energy are important we must have P,. < Po in upward flow. If the whole pipe were filled with a 
liquid of approximately constant density PL. we would put 

P., = Po-  pLgL. [27] 

In cases when the liquid is likely to flash at : < L, the calculation of P,. must be performed with 
some care, though the procedure requires no further elaboration. 

Each successive curve: ml, m:. m~. peaks at lower and lower values of :* with z* > z* > z*. 
The corresponding critical pressures are: P~ < P*. < P~. For a sufficiently low value of G, say 
GI, the section z = L is attained before solution GI = const intersects the associated critical 
flow rate at point l' where :~ > L. say at point l" with pressure P, = P'. The flow is subcritical 
from l to l", the exit pressure P~ = P". and no choking occurs. 

As the flow rate is increased, we eventually reach a value, say G.. at 2. whose end-point 
z = L exactly coincides with the critical curve G~ = G: with pressure P*. The channel begins to 
be choked, and the exit pressure P, = P*. If P. is set to be lower than P*.,, the flow in the pipe 
remains unaffected because curve m: has peaked at 2'. Flow with a larger value of G, say G~ at 
inlet state 3, must peak at z~ < L and pressure P~ > P*. This condition would have to set in 
inside the pipe and is, therefore, excluded. Indeed, referring back to figure 6; we see that state 2 
of figure II lies on line n~. This line, reproduced in figure 11, marks the boundary of all inlet 
states which arc compatible with a subcritical flow regime in a channel of prescribed length L. 

It is clear from the diagram and reasoning that flow rate G, is the largest attainable from the 
given stagnation state (ho, Po). Thus all flows with P, ~ P~ are legitimately described as choked 
because they occur with a flow rate G2 = G~. = const and in a regime in which the external 
pressure Po < P~ has ceased to influence the flow, 

The P, z diagram of figure 12 illustrates the various flow sequences: the subcritical flow ml, 
the choked flow m: and the impossible flow m~. It follows that in the absence of a 
convergent-divergent nozzle at pipe inlet, only pressures P. < P < P,. can occur at pipe inlet I 
in figure I, the pressure range O < P < P: being unattainable in it under the specified constraints. 

The diagram in figure 13 displays the pressure distribution in three cases. In figure 13a, 
which corresponds to flow mt of figure I I, the flow is subcritical, P, = P. = P", and the fluid 
leaves the pipe exit smoothly. In figure 13b, the flow corresponds to line 22' of figure I I. How 
the flow is choked with P, = P, = P*. When P. = P*, the fluid still leaves the pipe exit 
smoothly, but this is a limiting case. Any further reduction in the backpressure P., figure 13c, 
leaves the flow in the pipe unchanged, and the fluid must undergo a further expansion outside 
the duct. 
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Figure 12. Flow ~equences in P. z diagram, 
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Figure 13. Flow sequence~ along vertical pipe. 

II. ENTROPY 

The rate of change of entropy follows from 

ds 1 dh I dP 
d--~" = T d: pT d: [28a] 

o r  

ds = 4r,,. > 0 (ds > 0 implies d: > 0). [28b] 
dz pDT 

This proves, as asserted in section 7, that only upward flows are admissible. Along branch m, 
the entropy would decrease it if followed the direction of the vector 0. 

Since the flow is adiabatic [28b] represents the rate of entropy prod,ction in the flow 
direction. 

12. OTHER THERMODYNAMIC DIAGRAMS 

The h, P diagram is not the only one feasible even though its use suggests itself by the 
simplest choice of dependent functions in [lla-c]. Some readers may prefer the more 
traditional Mollier (h, s) diagram. The curves of figure Ii have been transferred to such a 
diagram shown in figure 14, the lettering corresponds to that in figure I I. 

There is no difficulty in showing that in the Mollier diagram the choking condition is given 
by 

G 

The reader should now experience no difficulty if he wishes to transfer the characteristic 
curves to one of the many more feasible thermodynamic diagrams. 
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Figure 14. Mollier k, s diagram. 

13. CONCLUD[NG REMARKS ON CHOK[NG 

Since experimentation with choking is relatively easy to perform, we expect that a 
comparison between the analytic results of this and similar studies and experiments will enable 
us to make judgements regarding the suitability of individual models for the description of 
two-phase flows. This justifies the intensity of attention paid to this detail by the authors. 

The view is expressed that the condition for choking discovered here. though physically 
appealing, has no universal physical validity. The true condition must emerge (as it did here) as 
a joint consequence of 
• the flow model 
• the equation of state 
• the closure equation 
not forgetting all the additional assumptions, such as the assumption of thermodynamic 
equilibrium and of infinite rates of phase change. The shape of the channel and the flow 
direction in the gravitational field will affect the location of the choked cross section, even 
though they do not influence the critical flow rate, G*. In general, it may be observed that the 
determinant A = [A,i[ specifies the thermodynamic state at the choked cross-section, whereas A 
and B i jointly determine the location of the choked cross section along the channel. 
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